Nanjing Chemical Material Corp.
Service
Products

BETA-Alanine Process Introduction BETA-Alanine Process Introduction

Basic Nature

Name: β-alanine
Alias: beta-aminopropionic acid; 3-aminopropionic acid; β-aminopropionic acid; β-alanine; β-primary oil amino acid; β-serine; alanine
Molecular formula: C3H7NO2

Chemical Structure

Appearance and traits: colorless powder
Melting point: 200oC
Water soluble: soluble in water, slightly soluble in ethanol, insoluble in ether and acetone
Density: 1.437

The Introduction of Amino Acid

An amino acid is a compound in which a hydrogen atom on a carbon atom of a carboxylic acid is substituted with an amino group. The amino acid molecule contains two functional groups, an amino group and a carboxyl group. Similar to the hydroxy acid, the amino acid can be classified into α-, β-, γ-...w-amino acids according to different positions of the amino group attached to the carbon chain. However, the amino acids obtained after proteolysis are all α-amino acids, and there are only twenty kinds, which are the basic units that constitute proteins.

Amino acids can exert the following effects through metabolism in the human body: 1 synthesizing tissue proteins; 2 converting into ammonia-containing substances such as acids, hormones, antibodies, creatine; 3 converting into carbohydrates and fats; 4 oxidizing into carbon dioxide and water and urea, generate energy.

Essential amino acids refer to amino acids that the body itself cannot synthesize or synthesize at a rate that does not meet the needs of the human body and must be taken from food. It is essential for the human body (or other vertebrates), but not synthetic in the body. It must be supplemented with amino acids from food, called essential amino acids. There are eight essential amino acids for adults: lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, and valine.

Non-essential amino acids refer to those that can be synthesized in animals. Non-essential amino acids do not require externally supplemented amino acids as a source of nutrients. Generally, the essential amino acids in plants and microorganisms are synthesized by themselves, and these are called non-essential amino acids. Non-essential amino acids for humans are glycine, alanine, valine, tyrosine, serine, cysteine, asparagine, glutamine, aspartic acid, glutamic acid. These amino acids are synthesized from a metabolite of a carbohydrate or from an essential amino acid, and are further introduced into an amino group to form an amino acid by a transamination reaction. It is known that even the ingestion of non-essential amino acids is advantageous for growth.

β—alanine

The simplest β-amine acid has the effect of increasing the content of imidazole dipeptide in muscle, increasing antioxidant capacity, enhancing muscle buffering capacity and anti-fatigue. It is also a component that constitutes pantothenic acid, coenzyme A, etc., and combines with histidine to form carnosine and its derivative goose carnosine (present in animal muscle). It is a non-essential amino acid that does not participate in protein synthesis. It has been widely used as a nutritional supplement for strengthening muscle endurance. Studies have shown that β-alanine can improve animal performance, regulate muscle growth and myogenic peptide content. In the medical field, it is widely used in the fields of feed, food, etc., in addition to the synthesis of pamidronate and balsalazide.

A peptide is a compound in which two or more amino acids are linked by peptide bonds. It plays an important physiological role in the human body and exerts physiological functions. An active polypeptide is referred to as an active peptide, also known as a biologically active peptide or a biologically active polypeptide. Active peptides are the most important active substances in the human body. It is precisely because of its increase or decrease in the amount of secretion in the body that humans have a cycle of childhood, childhood, adulthood, and old age until death. Injecting active peptides breaks the cycle of life, thereby achieving the miraculous effect of prolonging life and effectively slowing down aging.

Synthesis

1. Acrylic method (industrialization)

Under higher temperature and pressure conditions, the acrylic acid, acrylate or acrylate is aminated with ammonia to obtain the β-aminopropionic acid product. The amination process of acrylic acid is as follows:CH2 =CH -COOH +NH3→H2N-CH2 -CH2 –COOH
The acrylic route is simple in process, high in yield, and high in product purity, but it is necessary to break the chemical balance.

2. Acrylonitrile method (industrialization)

There are two types of methods for synthesizing beta aminopropionic acid using acrylonitrile as a substrate, namely direct amination and ammoniation hydrolysis. At present, most domestic manufacturers use acrylonitrile amination hydrolysis. Due to the presence of this side reaction, the reaction yield is generally not high. Moreover, due to the formation of a large amount of inorganic salts in the hydrolysis process, product purification is difficult and the purity of the product is not high.

The direct amination process is a one-step reaction of acrylonitrile and ammonia water by direct amination at high temperature and pressure to synthesize β-aminopropionic acid:
CH2 =CH -CH2 -CN +NH3→H2N -CH2 -CH2 –COOH
Ammonia Hydrolysis.

The reaction is carried out in two steps. First, acrylonitrile is aminated with ammonia to form β-aminopropionitrile. The β-aminopropionitrile is then hydrolyzed under acidic or basic conditions to be β-aminopropionic acid.
CH2 =CH -CN→H2N -CH2-CH2-CN → H2N -CH2 -CH2 –CO

3. β-Aminopropionitrile method

β-Aminopropionitrile is used as a substrate. The cyano group synthesizes β-aminopropionic acid by hydrolysis in one step. There are acid hydrolysis methods, alkali hydrolysis methods, and enzyme-catalyzed hydrolysis methods depending on the catalyst.
H2N -CH2 -CH2 -CN→ H2N-CH2 -CH2 -COOH +NH3
In actual production, liquid alkali (sodium hydroxide or potassium hydroxide) is mostly used to hydrolyze β-aminopropionitrile, and then acid neutralized. This method is characterized by high reaction yield, and the disadvantage is that a large amount of salt is produced. Some domestic manufacturers produce aminopropionic acid by this method.

4. β-Aminopropanol method

Converts β-aminopropanol to β-aminopropionic acid under the action of an oxidizing agent.
NH2 -CH2 -CH2 -CH2 -OH→NH2 -CH2 -CH2 -COOH

5. Succinimide method

Degradation reaction of succinimide in alkaline sodium chlorate solution (sodium hypochlorite, sodium hydroxide and sodium carbonate). The product is complicated to be purified, and the yield is not about 50% (calculated as succinimide), so it is not industrialized:

6. Fermentation

The steps are as follows:

a) preparing a substrate: a concentration of 5g / L -80g / L of L-aspartic acid substrate solution into the enzyme reactor, with an alkalinizing agent to adjust the pH of 5.0-8.5;
b) Enzymatic reaction: The enzyme-containing bacterial solution is added to the substrate solution for catalytic reaction. An appropriate amount of L-aspartic acid was added in portions during the reaction to adjust the pH of the reactants to 5.0-9.0. The enzyme-containing bacterial liquid is obtained by fermenting, concentrating and crushing the engineering bacteria with high yield of L-aspartate α-decarboxylase;
c) The reactants in the enzyme reactor are filtered, decolorized, and crystallized to obtain β-alanine. L-aspartic acid is converted to β-alanine using an enzyme-containing bacterial solution.

The process has the following advantages: mild production conditions, simple process, low environmental pollution; simple downstream extraction, high product quality, purity up to 99.0%; and conversion efficiency of β-alanine up to 99.5%.

Summary

Domestic industrial production mainly uses acrylonitrile ammonia hydrolysis. Most of these methods require strong alkali, strong acid, high temperature, high pressure and other conditions, and the product purification is cumbersome and has environmental pollution problems.
Related Products Wiki
  • 2017 Oleon Distributor Meeting

    2017 Oleon Distributor Meeting

    January 31, 2018Date:2017/11/02-11/04Place: Siem Reap, Cambodia Thanks for the invitation from Oleon, this is the third year for NCMC to attend Oleon’s AP& ME distributor meeting. Members from Oleon Belgium base, to...view
  • Happy Mid-Autumn Festival

    Happy Mid-Autumn Festival

    January 30, 2018There are always debates among Chinese on the flavors of certain traditional Chinese food such as dumplings, tofu pudding and moon cake about choosing sweet or salty. This Mid-Autumn Festival, let’s ...view
  • What Is The Active Diluent Of Epoxy Resin?

    What Is The Active Diluent Of Epoxy Resin?

    August 6, 2019The active diluent of epoxy resin is a kind of epoxy compound with small molecular weight containing epoxy group.view
  • The Analysis of the Factors Influencing the Odor Production of Polyether Polyol

    The Analysis of the Factors Influencing the Odor Production of Polyether Polyol

    April 21, 2021Polyether polyol is an important macromolecule raw material, which is mainly used to make various polyurethane materials. In recent years, with the continuous improvement of production technology, the...view
  • The Emergency Treatment of Methyl Iodide

    The Emergency Treatment of Methyl Iodide

    October 30, 2020What protective measures should be taken during the use of methyl iodide cas? What should we do if the leakage happens by accident? The answers are as follows: I. The emergency treatment of leakage Ev...view
  • First Camping in Autumn丨Baby Eagle Wandering in Mountains

    First Camping in Autumn丨Baby Eagle Wandering in Mountains

    November 17, 2022When talking about team building activities, what comes to your mind?To find a restaurant? Dining together?When talking about working, what comes to your mind?Bury your head in the work and ignore eve...view
Related Products
  • Dimethyl Sulfoxide Product InformationProduct Name: Dimethyl Sulfoxide Chemical Formula: C2H6OSCAS No.: 67-68-5Dangerous Grade: Technical Data:ITEMSSPECIFICATIONAssay≥99%Density1.100 g/mL at 20 °CAppearanceColorless ...
  • Isoprenol Product Information Product Name: Isoprenol (3-METHYL-3-BUTEN-1-OL)Chemical Formula: C5H10O CAS No.: 763-32-6 Dangerous Grade: 3Technical Data:ITEMSSPECIFICATIONSFirst gradeQualifiedAppearanceColorles...
  • Propyl Bromide Product Name: 1-BromopropaneChemical Formula: C3H7BrCAS No.: 106-94-5Dangerous Grade: 3Technical Data of Propyl BromideItemSpecificationAppearanceColorless Transparent LiquidAssay≥99.0%Water Content...
  • Lithium Chromate Product InformationProduct Name: Lithium ChromateChemical Formula: Li2CrO4CAS No.: 7789-01-7Dangerous Grade:Technical Data:ITEMSSPECIFICATIONLi2CrO4 (Assay)≥99.0%Ca≤0.01%Mg≤0.0005%Fe≤0.0001%Cl≤0....
  • TEL:+86-25-52337978
  • EMAIL: info@njchm.com
  • ADDRESS:12/F, Block B, Technology and Innovation Building, Nanjing University of Technology, No.5 New Model Road, Nanjing 210009, China