Nanjing Chemical Material Corp.
Service
Products

BETA-Alanine Process Introduction BETA-Alanine Process Introduction

Basic Nature

Name: β-alanine
Alias: beta-aminopropionic acid; 3-aminopropionic acid; β-aminopropionic acid; β-alanine; β-primary oil amino acid; β-serine; alanine
Molecular formula: C3H7NO2

Chemical Structure

Appearance and traits: colorless powder
Melting point: 200oC
Water soluble: soluble in water, slightly soluble in ethanol, insoluble in ether and acetone
Density: 1.437

The Introduction of Amino Acid

An amino acid is a compound in which a hydrogen atom on a carbon atom of a carboxylic acid is substituted with an amino group. The amino acid molecule contains two functional groups, an amino group and a carboxyl group. Similar to the hydroxy acid, the amino acid can be classified into α-, β-, γ-...w-amino acids according to different positions of the amino group attached to the carbon chain. However, the amino acids obtained after proteolysis are all α-amino acids, and there are only twenty kinds, which are the basic units that constitute proteins.

Amino acids can exert the following effects through metabolism in the human body: 1 synthesizing tissue proteins; 2 converting into ammonia-containing substances such as acids, hormones, antibodies, creatine; 3 converting into carbohydrates and fats; 4 oxidizing into carbon dioxide and water and urea, generate energy.

Essential amino acids refer to amino acids that the body itself cannot synthesize or synthesize at a rate that does not meet the needs of the human body and must be taken from food. It is essential for the human body (or other vertebrates), but not synthetic in the body. It must be supplemented with amino acids from food, called essential amino acids. There are eight essential amino acids for adults: lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, and valine.

Non-essential amino acids refer to those that can be synthesized in animals. Non-essential amino acids do not require externally supplemented amino acids as a source of nutrients. Generally, the essential amino acids in plants and microorganisms are synthesized by themselves, and these are called non-essential amino acids. Non-essential amino acids for humans are glycine, alanine, valine, tyrosine, serine, cysteine, asparagine, glutamine, aspartic acid, glutamic acid. These amino acids are synthesized from a metabolite of a carbohydrate or from an essential amino acid, and are further introduced into an amino group to form an amino acid by a transamination reaction. It is known that even the ingestion of non-essential amino acids is advantageous for growth.

β—alanine

The simplest β-amine acid has the effect of increasing the content of imidazole dipeptide in muscle, increasing antioxidant capacity, enhancing muscle buffering capacity and anti-fatigue. It is also a component that constitutes pantothenic acid, coenzyme A, etc., and combines with histidine to form carnosine and its derivative goose carnosine (present in animal muscle). It is a non-essential amino acid that does not participate in protein synthesis. It has been widely used as a nutritional supplement for strengthening muscle endurance. Studies have shown that β-alanine can improve animal performance, regulate muscle growth and myogenic peptide content. In the medical field, it is widely used in the fields of feed, food, etc., in addition to the synthesis of pamidronate and balsalazide.

A peptide is a compound in which two or more amino acids are linked by peptide bonds. It plays an important physiological role in the human body and exerts physiological functions. An active polypeptide is referred to as an active peptide, also known as a biologically active peptide or a biologically active polypeptide. Active peptides are the most important active substances in the human body. It is precisely because of its increase or decrease in the amount of secretion in the body that humans have a cycle of childhood, childhood, adulthood, and old age until death. Injecting active peptides breaks the cycle of life, thereby achieving the miraculous effect of prolonging life and effectively slowing down aging.

Synthesis

1. Acrylic method (industrialization)

Under higher temperature and pressure conditions, the acrylic acid, acrylate or acrylate is aminated with ammonia to obtain the β-aminopropionic acid product. The amination process of acrylic acid is as follows:CH2 =CH -COOH +NH3→H2N-CH2 -CH2 –COOH
The acrylic route is simple in process, high in yield, and high in product purity, but it is necessary to break the chemical balance.

2. Acrylonitrile method (industrialization)

There are two types of methods for synthesizing beta aminopropionic acid using acrylonitrile as a substrate, namely direct amination and ammoniation hydrolysis. At present, most domestic manufacturers use acrylonitrile amination hydrolysis. Due to the presence of this side reaction, the reaction yield is generally not high. Moreover, due to the formation of a large amount of inorganic salts in the hydrolysis process, product purification is difficult and the purity of the product is not high.

The direct amination process is a one-step reaction of acrylonitrile and ammonia water by direct amination at high temperature and pressure to synthesize β-aminopropionic acid:
CH2 =CH -CH2 -CN +NH3→H2N -CH2 -CH2 –COOH
Ammonia Hydrolysis.

The reaction is carried out in two steps. First, acrylonitrile is aminated with ammonia to form β-aminopropionitrile. The β-aminopropionitrile is then hydrolyzed under acidic or basic conditions to be β-aminopropionic acid.
CH2 =CH -CN→H2N -CH2-CH2-CN → H2N -CH2 -CH2 –CO

3. β-Aminopropionitrile method

β-Aminopropionitrile is used as a substrate. The cyano group synthesizes β-aminopropionic acid by hydrolysis in one step. There are acid hydrolysis methods, alkali hydrolysis methods, and enzyme-catalyzed hydrolysis methods depending on the catalyst.
H2N -CH2 -CH2 -CN→ H2N-CH2 -CH2 -COOH +NH3
In actual production, liquid alkali (sodium hydroxide or potassium hydroxide) is mostly used to hydrolyze β-aminopropionitrile, and then acid neutralized. This method is characterized by high reaction yield, and the disadvantage is that a large amount of salt is produced. Some domestic manufacturers produce aminopropionic acid by this method.

4. β-Aminopropanol method

Converts β-aminopropanol to β-aminopropionic acid under the action of an oxidizing agent.
NH2 -CH2 -CH2 -CH2 -OH→NH2 -CH2 -CH2 -COOH

5. Succinimide method

Degradation reaction of succinimide in alkaline sodium chlorate solution (sodium hypochlorite, sodium hydroxide and sodium carbonate). The product is complicated to be purified, and the yield is not about 50% (calculated as succinimide), so it is not industrialized:

6. Fermentation

The steps are as follows:

a) preparing a substrate: a concentration of 5g / L -80g / L of L-aspartic acid substrate solution into the enzyme reactor, with an alkalinizing agent to adjust the pH of 5.0-8.5;
b) Enzymatic reaction: The enzyme-containing bacterial solution is added to the substrate solution for catalytic reaction. An appropriate amount of L-aspartic acid was added in portions during the reaction to adjust the pH of the reactants to 5.0-9.0. The enzyme-containing bacterial liquid is obtained by fermenting, concentrating and crushing the engineering bacteria with high yield of L-aspartate α-decarboxylase;
c) The reactants in the enzyme reactor are filtered, decolorized, and crystallized to obtain β-alanine. L-aspartic acid is converted to β-alanine using an enzyme-containing bacterial solution.

The process has the following advantages: mild production conditions, simple process, low environmental pollution; simple downstream extraction, high product quality, purity up to 99.0%; and conversion efficiency of β-alanine up to 99.5%.

Summary

Domestic industrial production mainly uses acrylonitrile ammonia hydrolysis. Most of these methods require strong alkali, strong acid, high temperature, high pressure and other conditions, and the product purification is cumbersome and has environmental pollution problems.
Related Products Wiki
  • The Principle of Cationic Surfactants for Repairing Hair

    The Principle of Cationic Surfactants for Repairing Hair

    March 4, 2021As time goes by, hair is inevitably damaged by external factors, resulting in changes to its physico-chemical properties. Damaged hair may feel dull, stiff, coarse, difficult to comb and prone to brea...view
  • The Preparation Method of Bronopol

    The Preparation Method of Bronopol

    October 30, 2020Bronopol can be obtained by two reactions of alkanes hydroxylation and bromination with nitromethane and formaldehyde as raw materials and under alkaline conditions. The reaction equations are as foll...view
  • Preparation of Ethyl Iodide

    Preparation of Ethyl Iodide

    April 29, 2019Ethyl iodide is usually reacted with ethanol, iodine and red phosphorus, but the reaction is slow, and it needs to be heated in a reflux device for several hours.view
  • Emulsifier Chemistry: Unveiling the Secrets of Emulsion Technology

    Emulsifier Chemistry: Unveiling the Secrets of Emulsion Technology

    May 9, 2025In the fields of food, cosmetics, pharmaceuticals, pesticides, and even materials engineering, the term "emulsifier" frequently appears, but it is far more than just an "additive."...view
  • The Application of N-octyltriethoxysilane as the Impregnant

    The Application of N-octyltriethoxysilane as the Impregnant

    April 21, 2021N-octyltriethoxysilane is a kind of medium-chain alkyl silane with a monomolecular structure. It is a kind of colorless and transparent liquid that can be soluble in ordinary non-polar organic solvent...view
  • Application of Potassium Iodide in Medicine

    Application of Potassium Iodide in Medicine

    October 9, 2021Potassium iodide is a colorless cube crystal, in the form of particles or powders, and it has deliquescence so when it is exposed to the air for a long time, iodine will dissociate and turn to yellow....view
Related Products
  • Mixed Methylpyridine Product InformationProduct Name: Mixed methylpyridineChemical Formula:N/ACAS No.: N/ADangerous Grade: 3Technical Data:ITEMSPECIFICATIONRESULTRelative density 20℃(g/cm3)/0.946Water content %≤0.10.078...
  • Ethyl Vinyl Ether Product Name: Ethyl Vinyl EtherChemical Formula: C4H8OCAS No.: 109-92-2Dangerous Grade: 3Technical Data of Ethyl Vinyl EtherItemSpecificationAppearanceColorless Transparent LiquidAssay≥99.50%Water C...
  • Benzalkonium Chloride Product InformationProduct Name: Benzalkonium chlorideChemical Formula: C17H30ClN CAS No.: 68424-85-1Dangerous Grade: N/ATechnical Data:ITEMSSPECIFICATIONRESULTSAppearanceColourless to light yellow cl...
  • Isoprenol Product Information Product Name: Isoprenol (3-METHYL-3-BUTEN-1-OL)Chemical Formula: C5H10O CAS No.: 763-32-6 Dangerous Grade: 3Technical Data:ITEMSSPECIFICATIONSFirst gradeQualifiedAppearanceColorles...
  • TEL:+86-25-52337978
  • EMAIL: info@njchm.com
  • ADDRESS:12/F, Block B, Technology and Innovation Building, Nanjing University of Technology, No.5 New Model Road, Nanjing 210009, China